Unique binary search trees II¶
Time: O(4N/N(3/2); Space: O(4N/N(3/2); medium
Given an integer n, generate all structurally unique BST’s (binary search trees) that store values 1 … n.
Example 1:
Input: n = 3
Output:
[
[1,null,3,2],
[3,2,null,1],
[3,1,null,null,2],
[2,1,3],
[1,null,2,null,3]
]
Explanation:
The above output corresponds to the 5 unique BST’s shown below:
1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
[1]:
class TreeNode(object):
def __init__(self, x):
self.val = x
self.left = None
self.right = None
def __repr__(self):
if self:
serial = []
queue = [self]
while queue:
cur = queue[0]
if cur:
serial.append(cur.val)
queue.append(cur.left)
queue.append(cur.right)
else:
serial.append("#")
queue = queue[1:]
while serial[-1] == "#":
serial.pop()
return repr(serial)
else:
return None
[2]:
class Solution1(object):
"""
Time: O(4^N/N^(3/2))~=CatalanNumbers
Space: O(4^N/N^(3/2))~=CatalanNumbers
"""
def generateTrees(self, n):
return self.generateTreesRecu(1, n)
def generateTreesRecu(self, low, high):
result = []
if low > high:
result.append(None)
for i in range(low, high + 1):
left = self.generateTreesRecu(low, i - 1)
right = self.generateTreesRecu(i + 1, high)
for j in left:
for k in right:
cur = TreeNode(i)
cur.left = j
cur.right = k
result.append(cur)
return result
[12]:
s = Solution1()
n = 3
# print(s.generateTrees(n)) # [[1, '#', 2, '#', 3], [1, '#', 3, 2], [2, 1, 3], [3, 1, '#', '#', 2], [3, 2, '#', 1]]
# assert s.generateTrees(n) == [
# [1, '#', 2, '#', 3],
# [1, '#', 3, 2],
# [2, 1, 3],
# [3, 1, '#', '#', 2],
# [3, 2, '#', 1]
# ]
See also:¶
https://leetcode.com/problems/unique-binary-search-trees-ii
https://www.lintcode.com/problem/unique-binary-search-trees-ii/description